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FREQUENCIES AND MODES OF VIBRATION OF
BUCKLED CIRCULAR PLATES

By B. Herzog and E. F. Masur

SIMMARY

When subjected to sufficiently large radial pressure, a circular plate
buckles into a configuration which is governed by & set of nonlinear equa-
tions. The present note considers the frequencies and modes of wvibration
of small amplitude about this configuration. Perturbation technigues are
employed near the buckling point; as buckling proceeds solutions are ob-
tained through power series expansions. Although the static buckling con-
figuration is radially symmetric, no such restriction is imposed on the
modes of vibration. The analysis is "exact” within the limits of classical
plate theory and in the gense of a converging series which has been trun-
cated.

As a by-product of the analysis it is shown, at least within the range
of buckling amplitudes considered, that all the frequencies of vibration
are real. This suggests that observed secondary buckling phenomena are not
traceable to instability of the radially symmetiric static configuration.

II. INTRODUCTION, CREDITS, SYMBOLS

Introduction

Modern engineering structures have been experiencing a very rapid de-
crease in their "thickness" dimension as severe weight (and other) limit-
ations have been imposed during recent years. As a consequence wany struc-
tures are used in a postbuckled state, in vwhich the loads sustained are
greater than those predicted in the usual "Euler colum' sense. In addition,
structures loaded in this manner are frequently expected to survive an en-
vironment of dynamic forces while subjected to these high static loads.

The purpose of the present study is to determine the dynamic characteristics
of such a structure, that is, the natural frequencies and shapes of the
nodes of vibration of a circular plate as functions of a load parameter.

If & structure is loaded statically, compressive forces generally
tend {o decrease the frequency of vibration. The stiffness of the atructure
is thus reduced, and in fact vanishes when the lowest frequency of vibration



reaches zero. In the case of a conservative loading system, this condition
is identified with "buckling" in the sense that the equilibrium is no longer

stable.

The best known example of such ? roblem is the lateral vibration of an
elastic bar which is axially loaded. The mode shape is sinusoidal for a
simply supported bar, and the square of the frequency of vibration is li?e%rly
related to the axial force (or an associated loading parameter). Lurie
discusses several examples related to vibration and structural stability and
cites both theoretical and experimental results. He shows that, in general,
within the framework of linear theories, whenever the mode shape of buckling
and of vibration in the presence of axial loads is the same, the interaction
curve between the square of the frﬁqpency and some monotonic increasing load
parameter is linear, Massonnet treats the same subject extensively, but
selects problems of greater mathematical complexity, which he solves by
approximate means, such as the Rayleigh-Ritz method.

The linear eqpat&?ns of the classical theory of plates have been inves-
tigated eftinsively. T%g buckling of ? Sircular plate was first studied
by Bryan. Federhofer and Willers have studied the problem of the
vibrating edge plate subjected to edge loads and have presented extensive
results of the interaction between compressive (and tensile) forces and the
frequency of lateral vibration of the plate.

There exist few exact solutions for the nonllneaf ﬁqpations of buckled
plates, which were introduced in 1910 by von Kdrmén The problem is
particularly difficult for rectangular plates where several apgroximate
methods ve been introduced, such as the one by Marguerre. Bisplinghoff
and Pian have treated the vibration of a rectangular plate of infinite
length and, in some cases, that of plates of finite length. For the circular
plate several more solutions are available. Way 11) has solved, by power
series methods, the problem of a circular plate subjected to lateral load.
Friedrichs and Stoker (12,13) have used perturbation and power series methods
to solve the problem of the simply supported circular plate subjected to com-
pressive radial loading in the plane of the plate. Themethods of these
writers have been applied b{ Bodner to a clamped edge plate for the same
type of loading. Bromberg 5) has used the methods utilized by Friedrichs
and Stoker to study the effect of very largf %?teral loads which give rise

to certain instabilities. Keller and Reiss have applied numerical
methods to the problem dlicussed by Friedrichs and Stoker. Similar problems
are studied bg Alexeev and, as a special case, in a paper by Panov and
Feod0551ev. ) Masur 19) has utilized a stress function space to obtain

a sequence of solutions with error estimates.

In a recent paper, Massonnet (20) considers the effects of initial cur-
vature on the natural frequencies of vibration of an edge-compressed, clamped
edge, circular plate. He solves the static problem by the méethod of Fried-
richs and Stoker and then assumes that the mode shape of vibration is the same
as that of the static problem, and utilizing the Rayleigh-Ritz method obtains
the approximate frequency of vibration.

The present study is concerned with small vibrations of a circular plate.

The plate is radially compressed (as a result of aerodynamic heating or other
causes) and buckles into a radially symmetric configuration, such as is treated



in (12) and (13). With the edges fixed against additional radial displace-
ments, the buckled plate is now subjected to dynamic lateral loasds. If
only small additional time-dependent displacements are considered (that is,
if the resulting equations are linearized with respect to these additional
displacements), such problems can be handled by the usual spectral analysis
methods. Informetion is therefore needed regarding the natural frequencies
and modes of vibration. To obtain this information is the object of the
present investigation; it may be noted that while the buckled static con-
figuration exhibits radial symmetry, no such restriction is imposed on the

dynamic response.
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Symbols

components of membrane strains

thickness of plate
components of bending moments, non-dimensional

lateral surface load on the plate
time
components of dynamic membrane stress resultants, non-dimensional

components of membrane displacements

lateral displacement of plate

flexual rigidity of plate

Young's modulus of elasticity of plate material
stress function

shear modulus of elasticity of plate material
Begsel functions

components of bending moments
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components of membrane stress resultants
components of static membrane stress resultants, non-dimensional

radial component of membrane displacements, non~-dimensional

static lateral displacement of plate, non-dimensionsl

parameter influenced by thickness and Poisson's ratio
perturbation parameter

stress functions associated with dynamics and statics respectively
mass density of plate material

membrane ioading parameter

vibration frequency parameter

Poisson's ratio of plate material
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O frequency of vibration
Laplacian operator in polar coordinates specialized for radial

dependence
A general two-dimensional Laplacian operator

II. FORMUIATION OF THE PROBLEM

In vhat follows we consider the xy plane to be the middle plane of
the plate, and z the direction of the lateral deflection. The plate may
be subjected to membrane forces in the plane of the plate and to lateral
loads in the z direction. The thickness of the plate ig h. In the ab-
sence of body forces in the x and y directions the two relevant differen-
tial equations (8) of lateral equilibrium and compatibility are

DMW - Q(F,;) =P (201)
MF = - 2 QAWW) (2.2)

where A represents the Laplaclan operator, F is the Airy stress function,
w 1s the lateral deflection of the plate amd p is the load per unit area
applied to the lateral surface of the plate. The flexural rigidity is

EnS

D= —2
12(l-v2)

wvhere E ia the Young's Modulus of Elasticity and v is Poisson's ratio,
while the quadratic operator Q is defined by means of

Q(r,g) = f’xxg’yy + f:yygyn - 2f)xy8:xy

with a comma followed by a letter representing appropriate differentiation.

For a moving plate the terms associated with the inertia in the plane
of the plate are neglected in comparison to those due to the lateral motion;#*

the latter are given by

(2.3)

where 0 is the mass per unit volume.

¥For a discusgion to this point see references (21) and (22).



Only small amplitude harmonic vibrations with respect to the static
configuration of larger amplitude are considered. Consistent with this
assumption the following partitioning of the stress function F, the dis-
placements, strains and other quantities is appropriate:

F = FS + expDelot

T o= W+ ewPelot

ejy = eij + e*eIi)jejmt (2.4)
Nij = N?j + e*N?jeﬂDt

in which ej s and Nj4 are the cartesian components of the membrane strains
and forces, while ¢ is the frequency of vibration and g% is a small para-
meter. The membrane forces Nij are related to the stress function F by

N.,=¢,,¢,, F, _01
and the membrane strains eij to the forces by
1 10 (2.6)
., o= — [(1+v)N,, - VN, B..] =
e T gm LV T Vel %13 [o 1]

Substitution of the first two of Eqs. (2.4) and of Eq. (2.3) in
Egs. (2.1) and (2.2) and retaining only those terms which containe* to
the power of one or less yilelds two sets of differential equations, one
governing the static problem and the other the dynamic problem. These are

-S
MW - Q(F?,Gs) = 0

(2.7)
ar® = LB oS 3P
P - Q(FS, ) - aEP,#) = o™

(2.8)
AAFD = ‘EhQ(;fsyaD)

Since all detailed discussions of this plate are for a solid circular
one of outside radius R, the problem is rephrased in terms of the polar
coordinates. The static configuration has been shown (12) to be radially
symmetric, but nonsymmetric dynamic configurations are permitted. Hence,
all quantities are chosen in the following form* without significant loss

* Henceforth, unless otherwise noted, a summation symbol not having the
summation limits specified is int%gped to be summed over n from O to[w.
The last term in connection with has been added to accommodate a rigid
rotation; this is discussed in more detail later on.
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of generality:

F = B P - Zﬁg(.r) cos 16

# -0 P = ) ) sinno + () per
P = P(r) P o= Zﬁg(r) cos neé (2.9)
F° = FS(r) P = }_:F]r)l(r) cos no

in which u and v represent the displacement components in the radial and
tangential directions, respectively.

In order to render all pertinent quantities in these equations dimen-
sionless, we let

T
X = -
-8 R
_ R R -D
U-;zu u = Tpu,
4
. R =8 _ R =D
v—yev Vn—-?vn
- D
W=ES w.!].:Wn (2.10)
7 Y
g D
q):F_ "D_Fn
D = D
2 2
where 7 = h /12(1-v7) .

By the use of the above expressions the differential equations for the
static case become

o S (o) = 0

FHo =-L (W) (2.11p)
2x

(2.11a)

in which vz() =1 [x( )']" and primes designate differentiation with
X

respect to x.



The dynamic case for the nth mode* is governed by

Il2 2 1 L RN n® . wB
(v2-;2)wn-;(a>wn)+x_2¢ (2.12a)
' 2
-1 (¢nW')' + ;1—2 fnw" = N
X
2.2 2
(F - )3 = - 1 () - B e (2.12b)
2 2
where P i

In order to state the boundary conditions we rewrite all of the
quantities involved, including moments, membrane forces and strains in
terms of suitable non-dimensional quantities. We thereby define:

_ D 1 _ D
et Y T R
o D g D

= [} = T
% = = 3 Teo

D
n' _ —2 ,{n) cos n@ = e Yt}rix cos ne@

Z G4
y cos no = D Z 2 cos no
Lo RZ e (2.13)

R D E n
inne = i
sin EE txO sin ne

D

N?r R2
D

Nge R2
D

Ngo R

Similarly the stress-strain relationships among the dimensionless quantities
are:

ES = B =T T =31 gt 1
XX X% xx ~ VIigg =3 ¢ - vo
== _
%00 = Foo =Tgg - VIygy = 0" - L 0

2 "
1 n n ' n -4n n
eny = txx-vtg,;:-}-‘-,sn -3 4 -vé

2

S ___"n" (1 n' n- m
e [aTa] XX "V"’# '—'¢)
o0 . l" s (2.14)
n _ E.n _ 4 4
€ = GtxO 2(1 + v)n(z %)

* Separation into modes is possible because of the axial symmetry of the

static solution.



The non-dimensionalized bending moments are defined as follows:

712
D(£) M.,

K=t
|

@)% + L)

2
(%P W+ w) =(E) Mgg

S

o
n ] 2
Mgr = ;D(%)zj{:[wn + v(% v EZ )] cos ne
= o(Zye n
= D(g) }: m . cos né
By = D) E - s v'] cos no (2.15)
x

n

yA 2} n
D(= m cos no
1

w2 = D(l-v)(%{-)gz n(-::—n— " ;’“’;) sin no

2
D(%) 2 m}rie sin ne

For the appropriate boundary conditions it is convenient to separate
the static conditions from those associated with the vibration motion. Let
the plate be simply supported at its circumference; this implies that both
the deflection and the radial moment at the support are zero. In addition,
either the membrane displacements or stresses must be specified. From a
practical point of view the most realistic approach is to prescribe a given
radial displacement for the static case (corresponding to a uniform increase
in temperature with rigid supports) and rigid support for the dynamic case.

The boundary conditions governing the solution of the static problem
are therefore

By(w) = wW(1) = o (2.16)
By(W) = (W' 4 5 W), =0 (2.17)
and () = - Ny (2.18)

Here EE is the magnitude of the radial displacement which is required to
cause the plate to buckle in the linear sense; thus the value of A deter-
mines the extent to which the postbuckling domain is penetrated. This



third condition is conveniently rephrased in terms of the stress function
Since

Eq. (2.18), after substitution of Eq. (2.14), leads to

B3(9) x[x(2 o) + (1-v)(5 o)) =- N (2.19)

l

Following similar reasoning, the boundary conditions for the dynamic
equations become

Bl(w“) = 0 (2.20)

Ba(wn) = 0 . (2.21)

B = [ -vE M -] -0 (2.22)
X

Eq. (2.22) implies the vanishing of the circumferential strain4€O at the
boundary. In general, a fourth boundary condition also associateg with the
vanishing of the displacements is needed. For the case m = 0,1 (which

alone is considered in this paper), this represents, in part, a restriction
on the permissible rigid body motion and therefore does not appear explicitly
in the boundary conditions governing # (i.e. it is utilized only when the
membrane displacement components are computed). Conversely, the three
boundary conditions Egs. (2.20) to (2.22) are sufficient for determining w
and ¢ if n = 0,1; +this will become clear in what follows.



IITI. THE PERTURBATION SOLUTION

Tn recalling the differential equations.and boundary conditions gover-
ning the problem, we consider first the static case. It is required to solve
the following differential equations

L 1 '
vw-i(cp*w') = 0 (2.11a)
S 1 1
vier = - =— (WW
o (W) (2.11b)

and the associated boundary conditions¥

B,(W) = 0 (2.16)
By(W) = 0 (2.17)
133(¢>*) = -\ (2.18)

It is convenient here to partition the stress function such that

*—
o} = k@o + & (3.1)

where the function o, satisfies the differential equation
4
Vo, =0 (3.2)
and the boundary condition

B5(¢o)

Consequently, the function ¢ satisfies the differential equation

]

-Ug (3.3)

o = - L (wwr) (3.14)
2x
and the boundary condition

3.5
133(<1>) = 0 (3-5)

* The regularity requirements at the origin are being considered implicitly.

10
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The first of these equations represents the usual problem of plane
elasticity whose well-known solution for the solid disk is

2
_ Tx
&, = - ry (3.6)
where
T =ILE_.
1-v

and where Ugp 1s found later on.

In order to proceed to the topic of this study, we first redevelop
the solution previously obtained by Friedrichs and Stoker for the static
condition. This is necessary because thelr results are presented in such
a form as to make direct application to the present paper difficult. More-
over, they were able, through a change of the dependent variables, to re-
duce the order of the differential equations and to make them directly
integrable, at least in part. This is not possible here since w appears
explicitly in the dynamic equations as a result of the inertia term. Con-
sequently, it is necessary to obtain a solution also in terms of W and ¢ ;
however, the procedure of Friedrichs and Stoker is being followed.

We assume the functions W, ¢, and \ to be expandable in a perturbation
series: %

W = er + 65W5 + e5w5 + e
o = 62¢2 + e4¢4 + e6¢6 4 e (3.7)
A = xo + egxz + euxu + e

Here € 1is the perturbation parameter which is chosen as a monotone
increasing function whose direct significance will be fixed at a later
point in the development. Substituting these perturbation expansions in
the differential equations and boundary conditions and equating coefficients
of like powers of € ylelds a sequence of differential equations with assoc-
iated boundary conditions. For example, associated with O is the equation
whose solution is ¢o .

For ¢! the differential equation is, by virtue of Eq. (3.6),

= l 1 1 -—
L, (W) = v’*wl+ AT i(xwl) = 0 (3.8)
and the boundary conditions are
Bi(W) = o (3.9)
By(Wy) = o (3.10)

¥ It can be shown that the other terms vanish.

11
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This is the linear eigenvalue problem for the buckling of the plate subjected
to compressive edge traction or displacement ( AOT represents the eigen-
value of the problem). Only the lowest eigenvalue and mode are of interest
here; we therefore obtain, in conveniently normalized form,

W, =d (ax) - J (o) (3.12)

1
in which o is the smallest root of

(1+v)d,(a) + an(a) =0 (3.12)

and is related to the edge displacement by means of

o =T (3.13)

after setting Ko=l without loss of generality. This choice determines the
meaning of € . With Egs. (3.13), the value of U, 1is now

U = (l-v)r = (l-v)a? (3.1k4)

Higher roots of Eq. (3.12) lead to a complete set of functions of the
type of Eq. (3.11); this set will be utilized for purposes of expansion in

subsequent paragraphs.

For ¢ the differential equation for ¢2‘is

R AR
v, = -—a;c-(wlwl) (3.15)

with the associated boundary condition

B,(0,) = O, (3.16)

This system is partially integrable, and upon using the regularity conditions
at the origin the following expression in closed form is obtained through
the use of familiar recursion relations (2h):

2
Eopr = - %‘; [9%(a x) - To(a x) Iy (@x)]  (3.17)



Further integration of this expression seems impossible except by substi-
tution of an infinite series. When this is done and another integration
performed, the result is

2+2r

}_l;(b, _ %_22 1) (1+2r)! (%) . G (3.18)

r!((2+r)! ) (14+r):

Another integration is not necessary since the function ¢2 will not be
needed explicitly. The constant C can be determined from B3.

Por ¢’ the differential equation governing W3 is

= - _ 1 1
L(Ws) = Fs5(x) = - = 2,70a0)" + = (o))" (3.1%)
with the associated boundary conditions

0 (3.190)
0 (3.19¢)

By (Ws)

B (Ws)

]

This inhomogeneous system is singular in the sense that the associated
homogeneous system exhibits the nontrivial solution Wj. It therefore has
either no solution or, if it has a solution, then this solution is not unique
in that there can be added to it any arbitrary¥* multiple of W;. In this
latter case the right hand side must satisfy the orthogonality condition

1
JF r3(x) Wxdx = 0 (3.20)

o
which determines the coefficient

o3 (4%

A = % (3.21)

2

7t xe;)%ax
o

A particular solution of Eags. (3.19) can now be constructed and the pro-
cedure continued to determine further perturbation coefficients and func-
tions. However, as will become apparent in the sequel, there is no need to
pursve the solution of the equilibrium problem beyond this point.

Regarding the vibration of the plate about the static buckled configura-
tion and the associated equilibrium system of stresses as discussed in the

* While the choice is theoretically arbitrary, the specific value is
selected on the basis of convenience of computation.

13
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previous paragraphs, it is noted that the method of solution in the dynamic
case is similar to the one used above and hence only the essential poinis are

presented.

The equations governing the motion of the plate are Egs.. (2.12), which
are presented again for the sake of convenience. By substitution of Eq. (3.6),

they take the form
PR @ - e - L (o) 4 B o
( - ;5) + A - X_2 T x %2
2
-2 (W) 4 B A - AR (3.200)
x

2 '
end (P -E)T oo -k ) (3.220)

subject to the boundary conditions

Bl(wn) = 0 (30223)
Bo(wh) = 0 (3.224)
and Bu(g®) = o (3.22e)

for n = o,lo

The functions w, ¢ and p are now expanded in perturbation series
utilizing the same parameter ¢ as in the static case, that is

wio= wo egwﬁ 4o
€¢;+ €5¢§+

2 cen
|.10+€]_L2+

A S
[~
It

T
1l

(3.23)
Upon substitution of these perturbation expansions* in Egs. (3.22),

a new sequence of differential equations is obtained whose solution follows
procedures analogous to those presented for the static case. It also be-
comes apparent that the partitioning of the stress function ¢ * enhances
the similarity further,

For O the differential equation is

Lg(wg) = (¥ - 22)2 wo + xoT(v2 - Eg) wg U5 = o0 (3.24a)
X X

¥ The fact tnat w° andpfl are even expansions in € and that ﬁn is an odd
expansion may be easily verified upon substitution in the relevant equa-
tions. For the sake of brevity these steps are omitted here.



with the agsociated boundary conditions

31(":;) = 0 (3.2kp)
Bz(w:) = 0 (3.24¢)

This linear eigea;a.luc p;gblen admits an infinite gset of eigenvalues and
eigenfunctions ; and v (m = 1,2,...) vhere the latter is given by

- )_Jn_(ﬁ‘Em_) I,(87 %) (3.25)
n(Bl

which satisfies Eq. (3.24b) in which I is the modified Bessel function.
The characteristic equations is obtain®d in the usual fashion from the
boundary conditions Eq. (3.2kc):

T (BS™)[(2n + 1 + v)BR .1 (B5") - (B2 7,,0(88™)]

» - (3.26)
nm nm =
w3 (Ep ) (2n + 1+ v)BY Ty (B ) + (B )T Tnyp(By )] = O
nm nm nm
in vhich B; andp, are related to c and u by
nm,2 nm,2 2
(B, ) -(By ) = «
- , (3.27)
it = (B13(By)
The functions \r::'l obey the orthogonality conditions
wr:)mwx(;s xdx = O p%‘m.-# u_’és (3.28)
S .
and
g 22 rm 2 _ %) yWFS xax = O
[ U -5 R e a2 - ) e (3.29)

o

It is noted that while n represents the number of nodal diameters, the
index m is related to the number of nodal cirecles appearing in the vibration
pattern of the plate, A similar for the case of a clamped edge plate
was solved by Federhofer in 1935.

15
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‘ n
For el the differential equation governing the function ‘l is

2 ' 2
n\2 M2 l 1y n_ W n
( # - ;5) ‘l = -3 (ui"b ) + 2 1Yo (3.30a)
with the associated boundary conditions
n
B, ($)) = © (3.30D)

For m = Othe function ‘n can be established explicitly; for all other wvalues
of n it is necessary to resort to numerical integration.

For 62 the differentlial equation governing the deflection function wgm

is

L) = vy o+ fp(x) (3.31a)
in which

f;‘ = - k2T(V2 - i—i—) Vg + % (‘I’éwzoml‘)1

2
2 woym 1 nm' 'y’ R_ OB
- i-é o, v (B W) - 2 £% (3.31)

and in which associated boundary conditions are
nm
Bl(W2 ) = 0 (3.310)

B,(wy") = o0 (3.314)

As before, fp(x) must satisfy an orthogonality condition if Egs. (3.31) are
to exhibit a solution; after some manipulation this leads to

1
fgm(x)vzn xdx

(3.32)

nm
wgmwo xdx

no
O'ﬂl_, 0 —

For n = 0, numerical results are readily obtained. In particular
the value of the rate of change of frequency with respect to the load pars-
meter 1s desired in the neighborhood of the condition of linear buckling,
that is

lim & . lim  (Quys 3y oo (3.33)
16 es 0 dr <—:—>O(d€)/(de o/te.



It is noted from Egs. (3.2%) that v = 0 and w , as expected1
This in turn implies, by comparing Egs. (3.30) with Eq. %3 15), that ‘l
When this is substituted in Eq. (3.32) and Egs. (3.31b) and (3.21) are con-
sidered, it follows, after some integrations by parts and in view of the
boundary and regularity conditions, that

=2%

J x(w|)2dx
p = agr © (3.34)
I x(H ) dx
o
which is readily evaluated. Thus, for n =@ and m =1,
lim & _ 9,29 (3.35)

e-> 0 ax

It is therefore evident that when the critical buckling condition is
reached and the lowest frequency of vibration is zero, and as the plate pro-
ceeds into the postbuckled condition, the square of the lowest frequency
increases initially in proportion to the buckling parameter, this ratio being
identified in Eq. (3.35). Further calculations with the perturbation method
become exceedingly cumbersome and are abandoned in favor of the power series
method of the next chapter. However, the present result is exact as €
approaches zero since higher order expansions vanish for this condition.

17
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IV. THE POWER SERIES METHOD

Another possible means of solving the system of differential equations
presented here is to develop the solution in terms of a power series. Again
we borrow the results of Friedrichs and Stoker for the solution of the
static problem. The phrasing is slightly different and some of the numerical
computations represent minor variations of theirs.

In solving Eqs. (2.11) subject to the boundary conditions Egs. (2.16),
(2.17), and (2.19), we express the functions W and ¢ in even power series
of the coordinate x, that is,

Wom ) e (1)
m=0
0 =) b (1.2)

It can be shown, by substitution in Egs. (2.11), that the coefficients ag,
ay, bg, and by are, at this point, arbitrary and that all of the other co-
efficients of the two serles are given by the following recursion relation-
ships:

o, = ;z i(m-i) 2 iPooi (k. 3)
(m-l)
m > 2
m=-1
S i(m-i) a.a_ . (4. 4)
m hmg(m-l) ;é; 1) 8384

In terms of the coefficients in the power series, the previously stated
boundary conditions become

g, = 0 (k.5)
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Eq. (4.5) serves to determine the coefficient ag after the others have
been computed. Egs. (4.6) and (4.7) must be solved simultaneously for the
values of a; and by. The value of the coefficient by remains arbitrary, as
might be expected since the stress function ¢ can in general contain as much
as an arbitrary linear function of the cartesian coordinates without affect-
ing the stresses. Once the value of A 1is specified, it is therefore possible
to obtain all of the coefficients necessary to describe the complete solution
for the static case.

The dynamic case is governed by Egs. (2.12) and associated boundary
conditions* Egs. (2.20) to (2.22).

Again the solution of the differential equations may be expressed as
power series in x. By the usual methods this leads to

wn = xn Z CI(nn)Xan

m=

(4.8)

(2]

n (n) 2m
x Z o ¥ (k.9)

m=0

‘n

The recursion relationships for all values of n that evolve from this
system are, after dropping the superscripts for ¢ and d,

= 1 (n)
@ 7 Tea(@l)(mo)mm1) ¢ w2

m
+ (2m+n-2) Z 2i(n+em-2i)(aidp_ 1 +biepy i)

i=1
- n® Z 21(21-1)(848,_1+ b1cp_i)}
i=l (4.10)
m> 2
m
a =- 1 (em+n-2 2i(n+om-21) a,c. .
™ 16m(m-1)(m+n)(mtn-1) {(omen )izl (en-2t) #1%

h,
- n° 221(21-1) ajcp 4F (h.21)

* For n =2 2 the number of boundary conditions increases to four, as pointed
out previously.
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while the coefficients cgy, ¢;, dg, and 4, remain, at this point, undeter-
mined.

In terms of these power series, the boundary conditions for the dynamic
problem assume the following form:

}Z Cp = O (4. 12)

n=0

!
o

E: [(2m+n)(2m+n-1+v) - vn2]cm (4, 13)

m=0

il
(@]

[(2m+n)(2mtn-1-v) + vnoldy, (h.14)

m=1

It can be verified by examination of the recursion relation in the cases of
n =0 and n =1 that dg does not appear in the problem and this is again
plausible in view of the remark made in connection with bj.

The boundary conditions thus lead to a system of homogeneous linear
algebraic equations in the three unknown coefficients cp, c¢;, and d;, as
well as of the eigenvalue H. The characteristic determinantal equation
associated with this system is of formidable complexity and has therefore
not been assembled in explicit form. Nor would any particular benefit be
derived from this since, for the numerical solution obtained here, the
appropriate algorithm can be stated in terms of the equations themselves.

The solution of the system of equations is effected on the digital
computer. This is achieved by assigning consecutively arbitrary values, say
(for example) unity to the coefficients ¢y, ¢ and d;. The remaining co-
efficients in the power series expansions are then determined by the recur-
sion relationships. Since a generic term depends linearly upon cy, c; and
d,, each coefficient in the power series is then the sum of three polynomials
in p, each of these polynomials being multiplied by the constants cp, c¢j and
d] respectively. When this is substituted into the boundary equations k,12),
(4.13) and (%.14k), the resulting system of equations can be written in the

form

[A] {0} = © (L.15)

in which the elements of the 3 x 3 square matrix [A] are power series in u,
and {b} is the 3 x 1 column matrix whose elements are c., c,, and dl. If
{o} is not to vanish trivially, it is necessary and sufficient that the
characteristic equation

Al = o© (4.16)

be satisfied. This determinant is equivalent to a power series in p, whose
roots represent the required eigenvalues.
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For computational purposes this process must, of course, be truncated;
this may be done by terminating the power series for w and g when the value
of a coefficient falls below a designated vaiue. However, convergence of
these coefficients alone is not necessarily indicative of final convergence
of Eq. (4.16). In fact, truncation of the expansion series for w and § not
only reduces the elements of [A] to polynomials in p, but it also affects
the coefficlents in these polynomials. This process itself 1s convergent
in the present cagse. The resulting characteristic equation is a polynomial,
whose lowest root is found on the computer by standard methods.

Generally, about sixteen terms in the power series produce sufficiently
convergent terms in [A] and it suffices to take five or six terms in the
characteristic equation to obtain the roots. For very large penetration of
the postbuckling domein the s8ize of the numbers involved and the number of
terms required for the necessary accuracy requires a modification of this
technique due to the limitations imposed by the avallable computer. This
consists of an iteration procedure prior to the establishment of the final
polynomial in . The matrix [A] is evaluated on the basis of trial values
for i, and Eq. (4.16) is then satisfied iteratively. Computing time of this
procedure is approximetely eight times longer than by the first method.*

*leinitschke (23), who faced & similar computation in connection with a
problem in shells, has used several power series expansions for different
parts of the region. Matching them together, he has required fewer terms
in each series for convergence.
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V. RESULTS AND DISCUSSION

The degree of penetration of the postbuckling domain is measured by N,
the ratio of the actual edge displacement to that required for initial in-
stability. Friedrichs and Stoker (12, 13) use a parameter ), based upon a
stress ratio. For convenience the results here are expressea in terms of A;
Figs, 4 and 5 show the relation between the two paramweters. The main result
offered here is the relation between ,,(the squared frequency parameter) and
. TPig. 1 shows the relation for a symmetric mode (n = 0) and the first mode
having a nodal diameter (n = 1). The details of this relation in the vicinity
of X = 1 (that is, near the point of initial instability) are given in Fig. 2.
In Mig. 3 are shown the shapes of the modes of vibration. The data used in
plotting Figures 1, 2 and 3 and further information are given in Table I.*

The manner in which 1 increases with ) in the vieinity of initial
instability for the symmetric mode as shown by the power series analysis is
borne out by the perturbation analysis. From Fig. 2 the numerical value of
the glope 1s fifty, which compares well with the results of Eg. (3.35), i.e.
49,29, It is interesting to observe that after some increase im ) the fre-
quency of the nonsymmetric mode is lower than that of the symmetric mode.
Examination of the modes for the symmetric case shows that at & value of A
between 13 and 19 a nodal circle appears for the lowest frequency. Near
this value of )\ the frequency of the axially symmetriec mode increases less
rapldly and eventually becomes again less than that for n = 1. This behavior
of the frequencies is reasonable inasmuch as the nonsymmetric mode is essen-
tially inextensional while the symmwetric mode is initially extengional and
consequently the frequencies of the symmetric mode become greater than those
for n = 1. Upon the appearance of the nodal circle in the symmetric mode,
this mode also becomes essentially inextensional; this mey explain why the
frequency falls again below that for n = 1.

Apparently the frequency reaches an asymptotic value as )\ is increased.
It should be noted, however, that for large values of A the accuracy®* of
the results becomes less certain; moreover, the results themselves lose
meaning since, in the limit, the plate 1s stretched as a membrane except for
& narrow boundary layer at the edge, where also large bending stresses occur.
Whether a plate can reach such & state is subject to question on practical
grounds. The effect of initial imperfections, the onset of plastic yield-
ing or secondary buckling, and several other questions make the theoretical
idealized results appear somewhat academic for sufficiently large wvalues of )\ .

An apparently significant observation is that, at least within the range
of the present computations, the frequency of vibration does not return to zero
for . >1. This implies that the potential energy is positive definite and
hence the buckled configuration is stable if only expansions up to the second
power in the terms representing the additional neighboring deflections are
included. It appears likely that this is true also in relation to higher
modes. C?nssqpently the experimentally observed phenomenon of secondary
buckling 12) cannot be explained in terms of a simple branch point, Perhaps

¥ Al] calculations are based upon the value of Poisson's ratio v = .318.
*% "Accuracy' is defined here to be the ratio of the largest violation of
boundary condition Eg. (2.20) to the imum deflection. This ratio ranges
from an optimm of 10-° to a "poor" 10-%,




there exists the possibility of a discontinuous snap-through to a position
of lower potential energy. This becomes possible when the quadratie form
introduced in Ref. (19) loses its positive definite character, as is indeed
the case here. The problem of secondary buckling therefore shows great simi-
larity with that of buckling of certain types of shells.
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VARIOUS VALUES OF A, 25

A

A

]

FREQUENCY PARAMETERS p FOR n = O, n = 1 FOR

n=0 n=z=l
1.GOUVU1 1eUUOUU Ue000 1314410
1400009 1.000U1 0«00 131e412
100017 leU0U03 0009 131e414
100034 1.U0005 0eU17 1314419
100067 100010 DeU33 131,427
1400101 1.00015 04050 1314435
1400402 1400059 0e198 1314511
100887 100129 Gett37 1314632
1601574 1.00229 0e775 131,804
102462 100359 16213 1324020
103552 100517 1750 1324299
104846 1.00705 2387 1324623
1.06343 100923 3.124 132,998
1.08029 1.01168 3954 1334420
109886 1601437 44869 133.886
le41138 1.05927 204258 1414735
198215 113931 484371 1566161
2.91311 126498 944298 1794920
4415896 1442499 155952 2124109
4442706 1.45835 169243 219.088
6¢31125 1.68353 2624640 2684598
7411236 le 77494 302177 289,862
9.57456 2.04258 4214501 395,833
1125514 2021547 4994317 4014278
1386542 2447114 610406 4724235
19.60922 2499070 7944910 629174
29417450 3.76396 9484097 8864156
33.88582 4411459 9884571 1008.043
42429802 4470397 1035067 1213.,347
50415607 5.22U66 1061999 13886049
6101744 589279 1091762 1603.025
70496683 6647418 1122.798 17744656
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